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Abstract 

Dealing with highly configurable systems is generally very complex. Researchers and 

practitioners have conceived hundreds of different analysis techniques to deal with different aspects 

of configurable systems. One large focal point is the testing of configurable software. This is 

challenging due to the large number of possible configurations. Moreover, tests themselves are rarely 

configurable and instead built for specific configurations. However, existing tests need to be adapted 

to run on a different configuration. In this paper, we report on an experiment about automatically 

reusing existing tests in configurable systems. We used manually developed tests for specific 

configurations of three configurable systems and investigated how changing the configuration 

affects the tests. Subsequently, we employed an approach for automated reuse to generate new test 

variants (by reusing from existing ones) for combinations of previous configurations and compared 

their results to the ones from existing tests. Our results showed that we could directly reuse some 

tests for different configurations. Nonetheless, our automatically generated test variants generally 

yielded better results. Our generated tests had a higher or equal success rate to the existing tests in 

most cases. Even in the cases the success rate was equal, our generated tests generally had higher 

code coverage. 

1 Introduction 

To keep pace with the growing demand for custom tailored software products, companies 

develop configurable software systems. A range of techniques has been devised for the development 

and maintenance of configurable software. Many large-scale configurable systems, with thousands 

of configuration options, have been engineered. For instance, the Linux kernel has several thousands 

of configuration options, supporting a wide range ofdifferent hardware from hand held devices (e.g. 

Android phones) to large supercomputer clusters (Berger et al. 2013). The customizability of 

software has the advantage of more flexibility to meet specific customer requirements. 

However, a large number of configuration options means that there are often myriads of 

configurations that can be derived from the system. This variability is challenging for many tasks 



 

when working with configurable software. Not only do all the configuration options have to be 

considered in the development process, but also potential interactions between them. Broadly 

speaking, an interaction occurs when one configuration option changes the behavior associated with 

other options. 

When testing a configurable system, combinations of configuration options are of 

particular interest, as they may reveal undesired interactions. However, it is infeasible to test all 

combinations of configuration options, because the number of possible configurations is generally 

too high and usually increases exponentially with the number of configuration options. Krueger et 

al. discussed that already a system with more than 216 Boolean, non-constrained configuration 

options has a number of possible configurations comparable to the number of estimated atoms in the 

universe (Krueger 2006). To handle this combinatorial explosion, commonly only subsets of possible 

configurations are selected for testing. For instance, Combinatorial Interaction Testing (CIT) selects 

configurations that cover combinations of n configuration options (therefore, often referred to as n-

wise testing). Research has shown that tests from different configurations can sometimes be reused, 

but will potentially not work correctly anymore and risk for faults to remain undetected (Cohen et 

al. 2006). In order to more effectively test different configurations, the existing tests must be adapted 

for each specific configuration. However, in practice it is still a prevalent problem that the tests 

themselves are often not configurable (Mukelabai et al. 2018). 

The main goal of the work presented in this paper is to investigate the possibility for reusing 

tests for changed configurations. Moreover, we focus on automatically reusing tests from previous 

configurations to new configurations that combine previously tested configuration options. For our 

experiments, we used three different configurable systems, using different mechanisms to configure 

them. Two of our systems use preprocessor directives that a preprocessor uses to adjust the 

implementation to correspond to a specific configuration before compiling the code. These two 

systems contain configurable tests, which are tests derived from an annotated template, that we used 

to compare the quality of our automatically reused tests to. The other system we used is the widely 

used bug tracking system Bugzilla, which provides a large number of configuration options and can 

be adjusted to user needs in various ways at runtime. We implemented test variants for several 

different Bugzilla configurations by copying and adapting the tests from previous configurations, for 

two versions of Bugzilla. Such a clone-and-own approach is often used in practice for developing 

and extending related software systems (Dubinsky et al. 2013). 

Automating the reuse of tests for configurable software can substantially reduce the effort 

for testing and it supports a more rigorous testing process. Kr¨uger et al. discussed the need for 

automated test refactoring for the adoption of more systematic reuse approaches (Kr¨uger et al. 



 

2018). Thus, we applied an existing approach for automated reuse, ECCO (Extraction and 

Composition for Clone-and-Own) to automatically generate new tests from existing ones written for 

other configurations (Fischer et al. 2014). In our previous work, we already found evidence to 

support the usefulness of ECCO to automatically reuse tests for pairwise combinations of 

configuration options in a configurable software system (Fischer et al. 2019). 

We extent our previous work in this paper by: 

– Additional systems: In our previous work, we only had one configurable system 

available to perform our experiments on. We extend this by applying ECCO to more systems, to 

recover more evidence of the general usefulness of automated reuse for testing. 

– More combinations: In our previous work, we composed pairwise combinations of 

configuration options, to assess how often the automated reuse can combine tests and how common 

it fails to, which entails additional manual effort to fix the tests. In this paper, we extend this by also 

composing three-wise combinations. This allows us to better assess the interaction issues that might 

arise when applying automated reuse, to combine more configuration options. 

– Manual baseline variants: Two of the systems used in the experiments described in this 

paper contain configurable tests. Therefore, we could derive tests for all pairwise and three-wise 

configurations automatically from an annotated template and use them as a baseline to compare our 

variants composed with ECCO against. This allows us further insight in the quality of the generated 

tests and of the manual effort to fix them to be equal to the manually developed test variants. 

Additionally, we were able to apply mutation testing to one of these two systems to provide a further 

evaluation of the quality of the tests. 

Our evaluation showed promising results that the tests generated with ECCO could be 

generally executed on the configurations they were generated for, and yielded better results than the 

individual test variants that existed without automated reuse. Especially, for the two systems with 

configurable tests, all generated tests could be executed on their intended configurations. The code 

coverage for the composed tests for these two systems was very close to the configurable test variants 

and was on average about a 5% improvement over the existing individual variants. Moreover, the 

variants composed with ECCO for these two systems are very similar to the ones derived from the 

annotated template, with an average similarity of 95.41% and 98.88% respectively. The mutation 

score, for the one system we could apply mutation testing for, improved 14.2% on average with the 

ECCO test variants compared to the existing individual variants. For the other system, we found an 

improvement in terms of success rate of executable tests of on average 27.8% compared to individual 



 

test variants that were available without automated reuse. Similarly, we found an average 10.1% 

improvement in terms of code coverage. 

The remainder of this paper is structured as follows: Section 2 introduces the relevant 

background and Section 3 discusses the problems we aim to address and motivates our experiments. 

The automated reuse approach is outline in Section 4. Section 5 presents the systems of our study 

and the experiments performed with them, as well as the metrics recorded during the experiments. 

Sections 6 and 7 summarize the results of our experiments and discuss their implications on our 

research questions. Finally, Section 8 describes related work to our study and Section 9 summarizes 

the conclusions of our study and sketches our future work. 

2 Background 

In this section, we discuss some of the necessary background for our work. We describe 

highly configurable systems and existing approaches for testing them. 

2.1 Highly Configurable Systems 

Software systems are frequently developed with configuration options, so they can be 

better tailored to specific customer needs. These configuration options (a.k.a. features (Berger et al. 

2015)) have different types of how they are expressed (e.g. Boolean options, Integers, ...) and can be 

realized in different forms in the system. For instance, using preprocessor directives (e.g. #IFDEFs), 

conditional execution (e.g. simple IFs), or build systems (Mukelabai et al. 2018). A large number of 

highly configurable systems are being maintained, ranging from just a few to thousands of 

configuration options (e.g. Linux kernel). 

A wealth of research on highly configurable software is available in the field of Software 

Product Line Engineering (SPLE). Software product lines (SPLs) are families of related software 

systems distinguished by the set of configuration options (i.e. features) each one provides. SPLs are 

highly structured and they follow strict processes to deal with the contained variability. The available 

configuration options and dependencies between them are commonly expressed in a variability 

model. 

In the SPLE community, there are many different opinions of what constitutes an SPL, and 

the line between configurable systems and SPLs can be blurry. We define SPLs as a special kind of 

configurable software systems, that allow to derive independent variants from them. 

As an example for a configurable system, consider the Stack SPL in Fig. 1. The SPL can 

be configured to support different functionalities. For instance, the method clear in Line 17 can 



 

be added or removed depending on the configuration. The same applies for method size in Line 

20. Moreover, method pop in Line 6 can be configured to behave differently when called on an 

empty stack. It either throws an EmptyStackException or simply returns null, when there are no 

items in the stack. The variability model for the StackSPL is depicted in Fig. 8, with all configuration 

options and the constraints between them. 

Because SPLs typically entail a high upfront investment, many practitioners use a more ad 

hoc approach of copying and adapting previous variants, known as clone-andown (Dubinsky et al. 

2013). However, this leads to a set of similar variants that have to be maintained separately, which 

becomes more difficult, the more variants that have been developed. 

2.2 Configurable Software Testing 

There exists a substantial amount of research focusing on testing configurable software (do 

Carmo Machado et al. 2012; do Carmo Machado et al. 2014; da Mota SilveiraNeto et al. 2011; 

Engstrom and Runeson¨ 2011). 

A common thread among this research is the task to select variants for testing that are more 

likely to contain faulty interactions causing failures. The most prominent approaches use 

Combinatorial Interaction Testing (CIT) (Lopez-Herrejon et al. 2015). CIT techniques applied to 

configurable systems commonly use a variability model from which they compute all valid t-wise 

configuration-option-combinations and select configurations that cover all these combinations. For 

instance, for t = 2, also known as pairwise testing, a CIT algorithm has to find a set of variants (i.e. 

covering array) to cover all combinations of two configuration option values that can be selected and 

which are allowed by the variability model. Halin et al. showed in their work the usefulness of CIT 

and other sampling approaches to find faults in a configurable system (Halin et al. 2019). In their 

experiment, they tested all possible configurations in a configurable system. They found that 



 

 

Fig. 1 Code example of preprocessor annotations in Stack 

CIT approaches with t = 3 detected all the faults that could be detected over all possible 

configurations, by only testing a small subset of them. 

2.3 Mutation Testing 

Mutation testing is generally used to evaluate the adequacy of test suites to detect faults in 

the code. Mutation testing makes small syntactic changes to the code using mutation operators. The 

underlying principle of mutation testing is to introduce small changes into the program that simulate 

common faults, called a mutant (Moghadam and Babamir 2014). The tests are evaluated on their 

capability of detecting these mutants in the code. Meaning, if a test that previously worked fails when 

running on the mutated code, the mutant was detected (i.e. killed). The result of mutation testing is 

generally a mutation score, which is the ratio of the number of mutants killed over the total number 

of mutants introduced. The mutated code has to lead to different behavior of the code, in order to be 

detectable during testing, otherwise it will decrease the mutation score (Holling et al. 2016). In 

summary, a higher mutation score signifies a more robust test suite, which is able to detect more of 

the introduced mutants. 

3 Problem Statement 

As discussed above, to test a highly configurable software system, a subset of 

configurations has to be selected for testing. To test different configurations the tests also have to be 

adapted to conform to these configurations. One solution to achieve this would be to develop the 



 

tests also as configurable software, so they can be automatically adjusted to the configurations they 

are supposed to test. However, in practice this is often not the case (Mukelabai et al. 

 

Fig. 2 Test example empty Stack with EmptyStackException 

2018) as developing such tests would substantially raise development costs. Therefore, 

tests for a new configuration are usually created via cloning and manually adapting existing tests 

developed previously for a similar configuration. Following this process, practitioners end up with 

a set of test variants (i.e. partial clones), each to test a specific configuration. 

For instance, in our running example, the Stack SPL, we need to adapt certain tests 

depending on how the stack behaves when calling pop when there are no items in the stack. In case 

it throws an EmptyStackException (see Line 9 in Fig. 1) we use the test in Fig. 2. This test simply 

calls pop on an empty stack and expects an EmptyStackException to be thrown. In case no 

EmptyStackException happens, the test will report a failure. Therefore, if the Stack SPL is 

configured to not throw the EmptyStackException, but instead return null (see Line 11 in Fig. 1) 

we also need to adapt the test to still work. 

The adapted test is depicted in Fig. 3. It differs from the test before in that it no longer 

expects an EmptyStackException to be thrown, but instead expects the return value of the pop 

method call to be null. 

However, covering all possible interactions that can occur in a configurable system is 

typically infeasible with such a manual process. Even only testing all pairwise combinations can 

quickly become infeasible due to combinatorics, when the tests have to be manually adapted for each 

configuration - not to mention the fact that these tests also have to be maintained throughout the 

evolution of the system (Skoglund and Runeson 2004). In practice, testing is therefore usually 

focused on individual configurations (configuration options in isolation) and a few selected 

combinations. The limited coverage of combinations can lead to missing critical erroneous 

interactions between different configuration options. An approach to automatically generate tests for 

new configurations would help to reduce the effort of implementing and maintaining tests for a wide 

range of combinations and to find new interaction bugs. Given that the number of combinations is 

typically growing exponentially, the potential gain from using an automated approach can be huge 

in many projects. 



 

Moreover, companies often use a clone-and-own process for developing new variants for 

their configurable system (Dubinsky et al. 2013). These variants are tested individually before 

deployment to the customers. Tests are reused from previous variants and are also adapted in a clone-

and-own manner (Kr¨uger et al. 2018). There are many benefits for migrating from clone-and-own 

to a more systematic approach on a reusable platform, like 

 

Fig. 3 Test example empty Stack with ReturnNull 

reduction in maintenance costs. A barrier preventing such a migration is often the fear of 

introducing new bugs during the migration (Kr¨uger et al. 2018). Being able to automatically reuse 

tests from previous variants could help with this issue and it would allow to ensure that the system 

still behaves as expected after migration. 

These practical problems motivated us to investigate systematic and automated reuse for 

software tests of configurable systems and to perform the experiments discussed in this paper. In 

particular, we aim to answer the following research questions: 

RQ1: To what degree can tests from specific configurations be reused directly? We 

analyze how many of the existing tests can be directly applied for testing other configurations and 

in how many cases modifications are required. Hence, this question allows us to assess the manual 

effort that would be required to adapt existing tests after changing the configuration. 

RQ2: To what degree can we automatically generate test suites for new 

configurations from existing tests? The main goal of our experiments is to determine whether we 

can automatically compose test variants for new combinations of configuration options by reusing 

parts of the source code of existing configuration options’ tests but untested together previously. 

Since the goal is automated reuse, and not to generate completely new tests, we require existing tests 

for every configuration option. Therefore, we investigate the use of the ECCO tool support for 

automatically composing such tests. 

4 Automated Test Reuse with ECCO 

In an effort to mitigate the problems associated with clone-and-own, we developed an 

approach called ECCO (Extraction and Composition for Clone-and-Own) (Fischer et al. 2014, 

2015). Its purpose is to support reuse in a clone-and-own context by analyzing commonalities and 



 

differences in existing variants and, subsequently, support the creation of new variants by 

automatically reusing relevant parts from existing variants. 

In a first step, it extracts traceability information (i.e. mappings between configuration 

options and their implementation). The second step then allows to compose new variants by 

combining the relevant parts of the implementation using the extracted mapping information. In this 

paper, we apply ECCO specifically for creating new variants of tests. The test source code is 

analyzed at the level of the Abstract Syntax Tree (AST), which means that each individual element 

of a source code statement is considered. Then we compose new test variants by simply selecting a 

set of configuration options that shall be tested. The AST of the new tests is automatically created 

as a combination of the relevant parts of the ASTs of the existing tests. Finally, the developer can 

manually adjust or extend the newly created variants if necessary, e.g., when the combination of 

existing source code parts is not sufficient to fully express new behavior of the system due to 

interactions or conflicts between configuration options. In the context of testing, the newly generated 

test will likely fail when executed for the first time, indicating an unexpected and potentially 

erroneous interaction between configuration options. 

Figure 4 shows the simplified ECCO workflow. Input is a set of existing variants. Each 

variant consists of its implementation and the information of which configuration options it 

encompasses. Figure 5 shows code snippets of two different test variants of our running example, 

testing the configurations with configuration option isEmpty and size activated, respectively. 

The configuration option Base is added to each variant, because ECCO 

 

Fig. 4 Simplified ECCO Workflow 

uses it to map the code parts to it that all variants have in common. We highlighted the 

lines that are different between these two variants in gray. The variant with configuration option 

isEmpty checks if the stack is empty in different parts of the test. Similarly, the variant with 

configuration option size checks the size the stack. Each of these test variants can not be executed 

on the source code of the others configuration, since they do not support the functionality of 

isEmpty or size, respectively. Trying to apply the tests to the wrong configuration would 

therefore lead to a compilation error. 

Variant Variant Variant   
Variant  

 
  

 

ECCO 
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 C0  C1 C0  C2 

C0  C1  C2 



 

The extraction operation analyzes commonalities and differences in configuration options 

and the implementation of the variants, computes traceability information, and stores it in a 

repository. Figure 6 shows snippets of the mapping that the extraction creates. Each of the code 

snippets is mapped to a presence condition, which is used to compute for which configurations the 

code should be included. Moreover, the extraction stores the order in which statements have 

appeared before (as hinted at in the line numbering in Fig. 6), so that they can be later sorted in that 

order again when composing a variant. 

The composition operation then uses the information stored in the repository to compute 

the implementation of new variants given a set of desired configuration options. Figure 7 shows code 

snippets of a test generated with ECCO for the combination of the configuration options isEmpty 

and size. This new test variant contains the code to check both the 

 

Fig. 5 Source Code Snippets of Stack SPL Tests 



 

 

 

Fig. 6 Example of extracted mapping for a model transition 

isEmpty method and the size. The order of the calls to the isEmpty and size 

methods is arbitrary, because the corresponding statements have not appeared in a variant in the 

input. Therefore, these statements’ order are only sorted in respect to the statements that have 

appeared together within a variant in the input. In this case, the ordering of these statements in respect 

with one another does not make a difference, because they only check if the stack has the expected 

status. ECCO creates hints to the positions that the ordering could not be determined, which we did 

not use in this work, because we wanted to generate new test variants fully automated. 

The newly composed test can be executed on the combined configuration with isEmpty 

and size activated. In this case, we would be able to also run the original tests in Fig. 5. However, 

they only test the two configuration options in isolation from one another, while the ECCO generated 

test executed both in the same test. Therefore, the test variant generated with ECCO also achieves 

higher code coverage. 



 

 

 

Fig. 7 Source Code Snippets of Composed Stack SPL Test 

5 Experiment Design 

In this section, we discuss the methodology of our experiment. We start with explaining 

the systems under test and the existing tests, followed by the setup used for our experiments, and the 

metrics measured during these experiments. 

5.1 Systems Under Test 

We used three different configurable software systems in our experiments. In this section, 

we provide a short description for all of them. 

5.1.1 Stack 

The first system we used in our evaluation is our running example, the Stack SPL that we 

developed for illustration purposes. We showed the basic implementation in Section 2.1. The Stack 

SPL implements some of the most common functionalities of the stack configurable. Only the 

functionalities push and pop are not configurable, but exist in every configuration. Moreover, the 

behavior when using pop or peek on an empty stack is configurable. All of the configuration options 

are depicted in the variability model for the Stack SPL in Fig. 8. 

The most common form of a variability model is the feature model, which is a tree-like 

structure where the nodes describe the configuration options (i.e. features) and the edges denote the 

different forms of relations among configuration options (Benavides et al. 2010). In our running 

example, for the sake of simplicity, we use three types of feature relations. The first type is optional 

configuration options, which may or may not be selected in a variant when their parent feature is 

selected. Examples are configuration options Peek, IsEmpty, Size and Clear. A second type 

is alternatives, where exactly one member of a group of configuration options must be selected when 



 

 

their parent is selected. Examples for this are configuration options EmptyStackException and 

ReturnNull. Finally, there are also two examples for mandatory configuration options, features 

Operations and EmptyStackPop, which are always selected if their parent is selected. In our 

case, these two configuration options exist for every configuration, because they are direct children 

of the root, which is always selected in a feature model. In total, the feature model allows for 32 

different Stack configurations. 

As mentioned above, we developed the Stack SPL ourselves. Moreover, we also developed 

tests for the Stack, as configurable JUnit tests, which can be configured according to the 

configuration they should test by preprocessor directives. In sum, we developed six tests that execute 

some standard use cases for a stack and perform different checks depending on 

 

Fig. 8 Feature Model for Stack 

the configuration. The test suite is configured by a preprocessor and can be used to test all 

32 possible configurations. 

5.1.2 ArgoUML 

ArgoUML is an open source UML modeling tool that was refactored into a SPL (Couto et 

al. 2011). It has been widely used in the SPLE-community for different purposes, like evaluating 

feature location techniques (Martinez et al. 2018; Martinez et al. 2017). In the variability model (Fig. 

9) we can see that it contains eight optional configuration options. Six of these configuration options 

add different UML diagram types, one adds logging functionality, and the configuration option 

Cognitive enables to turn on suggestions to improve the UML diagram during design. ArgoUML 

can be configured to 256 different configurations. 

For ArgoUML, a test suite with 1198 unit tests exists. However, the tests for ArgoUML 

were not configurable from the start and only worked on a configuration with all configuration 

options turned on (i.e. all features selected). In order to be able to use the tests also on other 

configurations, we adapted them by annotating tests with preprocessor directives and created 



 

 

specification files with presence conditions to include or exclude entire classes. Therefore, we can 

use a preprocessor to generate a test suite for each of the 256 configurations. We did so following a 

process similar to the one performed in a previous paper about test case generation for SPLs (Fischer 

et al. 2018). In this process, we analyzed the source code and test code of ArgoUML and checked 

for dependencies from the test code to the source code (i.e. source code parts called by the tests). 

These dependencies point to code that would break, if we used specific configurations that did not 

contain the source code parts used by the test. If a piece of source code that a test depended on 

belonged to a specific configuration option (i.e. was annotated with the feature), then we annotated 

the test to also belong to this congratulation option. If a test included dependencies to multiple 

configurations options, the test was annotated with all of them in conjunction (i.e. logical AND 

relation). We did this until we did not find any more dependencies that would break the code in 

specific configurations. To confirm these annotations, we tested all 256 configurations with the 

corresponding variants derived from the annotated source code and found that all of them worked. 

5.1.3 Bugzilla 

The final configurable system we used in our experiments is the widely used, open-source 

bug tracker Bugzilla. Bugzilla is a Web-based application, so the front-end (user interface) 

 

Fig. 9 Feature-Model for ArgoUML 

of the Bugzilla server is accessed using a Web browser. For Bugzilla, we used two different 

versions. 

The first version we used was the Virtual Bugzilla Server (version 3.4) provided by ALM 

Works1 that we also used in our previous work (Fischer et al. 2019). The second version we used 

was the Bugzilla (version 5.1.1) provided by Turnkey2. Both versions can be downloaded as ready 

 
1 https://almworks.com/archive/vbs 
2 https://www.turnkeylinux.org/bugzilla 



 

 

to use virtual machine image containing the Bugzilla Web application (in the respective version), an 

Apache Web server, and a MySQL database running on Debian Linux. 

We started off with Bugzilla 3, and initially implemented a suite of 34 automated test cases 

exercising the main functionality of Bugzilla via the Web front-end (e.g., submitting a bug report, 

searching and updating a report, changing the bug status). The tests are written in Java and use 

Selenium3 to control the Chrome Web browser to interact with Bugzilla. These tests run on the 

default configuration of Bugzilla. Subsequently, we identified a range of different configuration 

options that can be used to change the default behavior of the use cases tested for Bugzilla. We 

arbitrarily selected a diverse set of 15 different options (listed in Table 1), which resulted in 

configuration changes that are directly observable in the Web front-end, in the navigation structure, 

or in the bug tracking workflow of Bugzilla. These configuration options where chosen because they 

change the behavior of one of the tested use cases and we therefore expected them to have an impact 

on our tests when turned on. Thus, these options will make adaptations to the existing tests necessary 

in order to run them after a different configuration of the selected configuration options. 

Furthermore, some of the configuration options are expected to result in conflicts when activated in 

combination. We created tests for each of the additional configurations by manually performing 

cloneand-own starting from the test cases for the default configuration. 

For Bugzilla 5, we followed a similar process. We also started by developing tests for the 

default configuration, however we reused the tests from version 3.4 and adapted them to work on 

Bugzilla 5. Subsequently, we checked the previously identified configuration option in the version 

5.1.1 and again used a clone-and-own process to adapt the tests from the tests for the default 

configuration and checking the adaptations made for the different configurations in version 3.4. 

However, during this process we discovered that two configuration options used in version 3.4 no 

longer exist in version 5.1.1. Therefore, we only used the remaining 13 options in the newer version. 

Since we do not have a variability model for Bugzilla, like for the other two systems, we 

list the 15 configuration options we used in our experiments in Table 1 along with the number of test 

cases developed in each of the variants, which only have this one configuration option changed from 

the default configuration. For comparison, we also list the number of tests cases for the default 

configuration in Table 1, which has all of the listed configuration options disabled. We report the 

numbers of tests per Bugzilla version and provide a description of the impact of changing a specific 

configuration option. The two configuration options (CO03 and CO15) that only exist for version 3.4 

 
3 https://www.seleniumhq.org/ 



 

 

are highlighted in gray. Note the difference in the number of tests between the two versions is due 

to the configuration option CO03 no longer existing in Bugzilla 5. In fact, Bugzilla 5 always allows 

the use of empty search values, and therefore the search always behaves like in Bugzilla 3 with 

configuration option CO03 turned on. This made two tests, which verified the behavior of the 

Table 1 Configurations and Number of Tests 

 

search function in Bugzilla 3 without configuration option CO03 obsolete for Bugzilla 5. 

For the same reason, the variant with CO03 turned on, also has one less test in Bugzilla 3, because it 

removed the two obsolete tests and added one that tests the behavior with CO03 activated. We adapted 

this additional test, for the behavior with CO03, for Bugzilla 5 and added it to all manually developed 

variants. 

The changes in the different configurations range from simply adding an optional comment 

field (CO01) to completely changing the bug workflow and the states that can be assigned to a bug 

(CO07 and CO08). 

Some of these configuration options are related to the same functionality and we therefore 

expect conflicts if they are set simultaneously with one another. For instance, CO07 and CO08 both 

change the bug workflow and they can not both be configured at the same time. Configuration option 

CO12 can only be used when duplicates are allowed. A conflict also exists between configuration 

options CO14 and CO15, because they both change the default status of duplicates to different states 



 

 

and therefore, they cannot be set simultaneously. Furthermore, we might run into another conflict if 

any of the two is activated together with CO07, because they change a bug status that might no longer 

be allowed in CO07. 

Each of the test suite variants that were developed to test a specific configuration consists 

of a (1) Test Set Up that configures the Bugzilla server accordingly (i.e. activates the configuration 

option and resets it to the default configuration after the tests were executed), (2) Test Cases that 

exercise the functionality of Bugzilla in various ways, and (3) Page Objects that use Selenium to 

access Bugzilla through its Web front-end. Figure 10 sketches the test execution cycle of one of the 

test variants targeting a specific configuration. All of the parts are implemented in Java and each test 

variant is an independent Maven4 project that has been 

 

Fig. 10 Sequence of Executing a Bugzilla Test Variant 

created by cloning and modifying the tests for the default configuration. We use the tool 

Maven Invoker5 to automatically execute all test variants. As depicted in Fig. 10, we first call the 

Test Set Up to set Bugzilla to the desired configuration. Next, we use the JUnit test runner to execute 

the Test Cases, which call methods provided by the Page Objects. These are Java objects that use 

Selenium to interact with the Web pages realizing the Bugzilla front-end and to verify the expected 

outcome. Finally, we use the Test Set Up to reset the configuration back to its default in order to 

provide a clean basis for running other test variants using the same process. 

 
4 https://maven.apache.org/ 
5 https://maven.apache.org/shared/maven-invoker/ 



 

 

5.2 Composing New Test Variants 

We applied ECCO to create new test variants from existing tests. As existing tests, we used 

the Bugzilla tests that we developed manually and for the SPLs we generated a test variant for each 

optional configuration option enabled individually. This leaves us with 6 test variants for the Stack 

SPL, and 8 test variants for ArgoUML, each with one of the configuration options enabled. For 

Bugzilla, we used 16, respectively, 14 test variants as input to ECCO, each testing a configuration 

with one of the configuration options in Table 1 active. In practice, we have often observed that 

configuration options are tested in isolation like this, and combinations are often limited to only 

some selected configurations. 

We used ECCO to generate tests for new configurations that are combinations of 

configuration options covered individually by their existing tests. It was used as described in Section 

4 on the existing test variants along with the tested configuration options as input. Because the 

existing variants that we use as input to ECCO only contain configuration options in isolation, we 

are missing any information of code that might need to be added or removed to deal with 

combinations of configuration options. Such interaction code would only exist if we included 

variants that contain combinations of configuration options already to the input to ECCO. Therefore, 

we expect this to be even more difficult for ECCO to combine the tests for different configuration 

options. ECCO would potentially perform even better if more such variants would be included in 

the input, but we apply it in the worst case we have observed in practice. 

5.3 Experiment Execution 

In this section, we describe the experiments that we performed to answer our research 

questions. We investigated how well tests for a specific configuration will still work, if we changed 

the configuration by changing one or two configuration options. Subsequently, we used ECCO to 

generate tests for the changed configuration and compared the test results with the ones from the 

manually developed tests. 

Direct reuse of existing tests on changed configurations For our first research question 

RQ1, we want to investigate how well tests can be reused directly. Therefore, we used test cases that 

have been developed to test configurations with a single configuration option activated (called 

individual configurations), and executed them on configurations that combine this configuration 

option with one or two other options. 



 

 

In particular, we executed the individual test variants on all pairwise and three-wise 

configurations that have the configuration option, the individual variant is supposed to test, activated. 

Therefore, we tested all pairwise and three-wise combinations of configuration options, and checked 

how well the tests developed for the individual configurations still worked. By analyzing how well 

the individual test variants work on the pairwise and threewise combinations we can assess how 

common issues are for applying tests to a slightly different configuration and how much more severe 

these issues might become when more configuration options are combined. 

We even combined configuration options for which we expected conflicts, like 

EmptyStackException and ReturnNull in the Stack SPL, to see how the system would 

behave in these cases. Note, that this combination would be excluded by the variability model for 

the Stack SPL in Fig. 8. Nonetheless, we included combinations like this, since in our experience in 

practice there often are no variability models employed and dependencies between configuration 

options are commonly only implicit knowledge of some domain experts. Therefore, such 

combinations might occur in practice, especially in combinations that might be more obscure than 

the example used here. This means for each pairwise configuration we executed the two individual 

test variants that test the individual configurations. Similarly, for each three-wise configuration, we 

executed the three individual test variants. This allowed us to asses to what degree the individual 

variants can be directly reused on changed configurations, and how much manual effort it would 

potentially take to adapt the tests. 

Automatedreusebycomposingnewtests To address RQ2, we applied ECCO to generate 

new test variants for all of the pairwise and three-wise configurations, by automatically reusing the 

individual test variants of each configuration option. We executed these new test variants on the 

pairwise and three-wise configurations they were generated for, and compared the results to the ones 

of the previous experiment. Moreover, for the SPLs we have configurable tests. Therefore, we also 

automatically derived the tests for the pairwise and three-wise configurations from the annotated test 

code of these two systems and compared how close the tests composed with ECCO are to these 

original ones. 



 

 

 

Fig. 11 Example Experiments on Pairwise and Three-wise combinations 

Figure 11 illustrates the experiments on the pairwise and three-wise configurations. It 

shows the tests that we executed on the pairwise and three-wise configurations in both of our 

experiments. To setup the pairwise and three-wise configurations in the Stack SPL and ArgoUML, 

we automatically derived the source code from the SPLs, via preprocessor, and replaced the tests 

with the ones we wanted to execute at the time. Before, execution we made sure to clean the builds 

and recompile, to make sure that the correct tests would be executed. For Bugzilla we setup the 

configurations by performing the setups from the individual variants one after the other. In order to 

mitigate the possibility that the setup of the first configuration influences the other one (e.g., one 

masking the other and corrupting the outcome), we performed the experiment twice and changed the 

order in which the setups were executed. 

All test variants of the Stack SPL and Bugzilla, original ones as well as those generated 

with ECCO, were realized as separate Maven projects. We used the Maven Surefire Plugin6 to 

 
6 https://maven.apache.org/surefire/maven-surefire-plugin/ 

 
 

 
 

  

 

 
 

    

    

 
 

 
   

  

  

    

      

 
 

 



 

 

generate test reports and the JaCoCo7 Maven Plugin to record code coverage. ArgoUML uses an Ant 

build system, which we executed with automated command line calls. We integrated JaCoCo in the 

build process to allow us to record the code coverage during testing. 

5.4 Metrics 

Next, we will discuss the metrics we recorded for our experiments. From the test reports, 

we can extract the first set of metrics. 

Test Result Metrics 

– Number of Test Cases Tests. The number of test cases that exists for a variant. 

– Number of Successful Tests Succ. The number of test cases that were executed in a 

variant without any problem (i.e. no failures or errors). By failure we refer to tests that fail because 

an assertion was violated, and by error we refer to cases where an exception led to the test failing. 

This terminology is also used in the test report, generated for each test execution. 

– Test Success Rate SuccessRate. The rate in which test cases could be executed without 

problem (i.e. no failures or errors). 

SuccessRate = Succ/Tests 

Furthermore, as the existing tests may still pass but yield less coverage than the composed 

ones, we also analyze and compare the coverage achieved by the tests. 

We measured the coverage of all our systems with JaCoCo. However, we were not able to 

measure the coverage of the Bugzilla Perl code. Instead, we measured the coverage of the Java code 

for the page objects of the executed variants. Our reasoning for doing this was that each page object 

represents an actual page of Bugzilla, and the code that was executed uses parts of the page. 

Therefore, we argue that coverage of the page object should logically be correlated with the coverage 

of Bugzilla Perl code itself and should be a feasible proxy of the code coverage. 

The coverage report from JaCoCo includes lines, methods, and classes that have been 

executed during testing. However, the line coverage metric is influenced by the formatting (i.e. a 

statement can be in one line or split into several lines). Because ECCO may format some statements 

different than they were in the original variants, we computed statement coverage instead, which 

allows a better comparison. We did this by iterating over the Abstract Syntax Tree (AST) (generated 

 
7 https://www.eclemma.org/jacoco/ 



 

 

with the Eclipse Java development tools (JDT)) and checking the JaCoCo report for each statement 

if the corresponding line was executed. 

Moreover, from this AST we computed the number of statements that exist in each variant 

and over all variants combined. 

Coverage Metrics 

– Number of Statements FullCount. The number of unique statements that exist 

combined over all variants. 

– Number of executed Statements VarCovered. The number of statements that have 

been executed when testing a variant. 

– Statement Coverage on all code OverallCoverage. Coverage of statements in an 

individual variant in relation to all statements of all variants. 

OverallCoverage = VarCovered/FullCount 

Therefore, OverallCoverage is the proportion of the entire system (i.e. including all 

configuration options) that is executed during testing. 

Mutation Metrics 

– Number of mutants killed KilledMut. Number of mutants in a configuration that the 

tests detected. 

– Number of mutants created CreatedMut. Number of mutants created for a 

configuration. 

– Mutation Score MutationScore. Ratio of mutants in a configuration that were detected 

in relation to the number of mutants created. 

MutationScore = KilledMut/CreatedMut 

For mutation testing we used the PIT8 mutation testing tool. Because of the minimum 

requirements of PIT, Java 5 or above and JUnit 4.6 or above, we were able to apply it only to the 

Stack SPL. We were not able to apply it to ArgoUML, since it uses JUnit 3.8.2 and has dependencies 

to it we could not port to a newer JUnit version. Bugzilla is developed in Perl, for which we were 

 
8 https://pitest.org/ 



 

 

not able to perform mutation testing on. Nonetheless, we report the mutation score for Stack SPL, 

because we believe it provides a deeper insight in the quality of the tests. 

To assess the manual effort required for finalizing the variants composed with ECCO, we 

compared them with the original variants derived from the annotated source code of the two SPLs 

(Stack and ArgoUML), and computed some metrics. For Bugzilla we do not have annotated code 

templates for the tests and therefore can not derive variants to compare our ECCO composed variants 

against. Therefore, we report the Similarity only for the two systems Stack and ArgoUML. 

Similarity Metrics 

– Number of Statements in a variant VarCount. The number of statements that exist in 

a variant. 

– Number of surplus Statements Surplus. The number of statements that exist in the 

ECCO variant but not in the variant derived from the annotated source code. 

– Number of missing Statements Missing. The number of statements that exist in the 

original variant but are missing from the ECCO variant. 

– Similarity of two variants Similarity. Jaccard Similarity of two variants, based on 

their statements. 

VarCountECCO − Surplus 

 Similarity = + 

 VarCountECCO Missing 

To asses ECCO’s performance to extract the mapping and compose variants we measured 

the runtime and reports metrics. ECCO was executed on a HP EliteBook laptop with an Intel CoreTM 

i7-8650U processor (1.9 GHz, 4 cores) and 16GB of RAM and SSD storage running the Windows 

10 operating system. 

Runtime Metrics 

– Time to extract mappings ExtractTime. The time for ECCO’s extraction to map 

configuration options to test code for a variant. 

– Time to compose a variant ComposeTime. The time for ECCO’s compositions to 

retrieve traces and generate a variant. 



 

 

6 Results 

In this section, we summarize the results of our experiments on the different systems used. 

6.1 Stack 

We generated the test variants for pairwise and three-wise combinations of the Stack 

configuration options using ECCO. The extraction from the six individual Stack variants and the 

corresponding six configuration options with ECCO took 0.725 seconds. It took 1.8 seconds to 

generate all 15 pairwise and 1.8 seconds to generate the 20 three-wise variants. 

Furthermore, we automatically derived the original test variants for all pairwise and three-

wise configurations from the annotated test code of the SPL. This allows us to compare the results 

from the ECCO variants with the tests manually developed for a specific pairwise or three-wise 

configuration. 

Figure 12 shows the Similarity of the ECCO and the original variants. We can see that the 

ECCO variants are very close to the original variants, with an average Similarity of 97.3% and 94% 

for pairwise and three-wise variants respectively. The majority of the differences are missing 

statements, which are on average 0.533 statements missing in six of the pairwise variants (four are 

missing one statement, two are missing two) and 1.45 statements missing in 15 of the three-wise 

variants (six variants are missing one statement, four are missing two statements, and five are 

missing three). On average, the original pairwise and three-wise variants include 23.1 tand 28.2 

statements respectively. Additionally, one pairwise and four three-wise variants composed with 

ECCO contained a single surplus statement. 

Figure 13 depicts the total number of tests executed for the different test variants. The 

number of tests in the original variants was always equal to the number of tests in the corresponding 

ECCO variant, ranging from four to six test cases. This is because none of the tests in the SPL are 

annotated with more than one configuration option, meaning that all tests are in at least one of the 

individual variants and can therefore be reused by ECCO. The individual variants generally have 

fewer tests, because they are missing some tests that are specific from another configuration option. 

The SuccessRate obtained from those test cases is always 100% for ECCO and original 

pairwise and three-wise tests. However, the individual variants achieved only a 



 

 

 

Fig. 12 Similarity of the ECCO pairwise and three-wise test variants to the original variants of Stack 

 

Fig. 13 Number of Test Cases (Tests) in the ECCO and original pairwise and three-wise test variants and 

the individual variants on pairwise and three-wise configurations of Stack 

75% SuccessRate in some cases. This happened in the pairwise combination of 

configuration options EmptyStackException and ReturnNull. When applying the tests 

from the individual variant for testing only configuration option ReturnNull an 

EmptyStackException occurs in a test that was not expected for this test. The same happens 

for all three-wise configurations that combine both configuration options 

EmptyStackException and ReturnNull, when running the individual variant for 

ReturnNull. This is an expected conflict, because the behavior of calling method pop on an 

empty stack can only be either EmptyStackException or ReturnNull, which is why these 

two configuration options are in an alternative in the feature model in Fig. 8. Nonetheless, we 

 

 

     
 

 

 

 

  

         

 

 

 

 

 

 

 

 



 

 

included this combination for completeness of the results and to see how the tests would behave. For 

all other cases, the SuccessRate was also 100%. 

 

Fig.14 OverallCoverage of the ECCO and original pairwise and three-wise test variants and the individual 

variants on pairwise and three-wise configurations of Stack 

The results for the SuccessRate showed that ECCO can reliably generate test variants for 

the Stack, that can be executed on new configurations. Next, we depicted the OverallCoverage of 

the different test variants in Fig. 14. ECCO test variants covered nearly the same number of 

statements as the original variants, in both pairwise and threewise combinations. The cases where 

the ECCO variants have a lower coverage that the original ones come from statement inside the 

original test variants that only occur in combinations of different configuration options. For instance, 

there is a test to check the behavior of the stack when calling the peek method on an empty stack, 

which should behave similar to an empty stack pop, depending on configuration. However, the 

individual variants only test configuration options peek, EmptyStackException and 

ReturnNull in isolation. Therefore, none of the individual variants contain the code inside the 

test that evaluates the behavior correctly, which means ECCO could not reuse it and therefore has a 

lower coverage in some cases. This shows that, even though ECCO appears helpful for reusing tests, 

in some cases manual effort is necessary to complete the generated test variants. For this reason and 

because of the fewer tests, the OverallCoverage of the individual variants was also lower than the 

other variants. 

To further evaluate the quality of the tests we employed the mutation testing tool Pitest, to 

introduce small changes in the source code and check how well the tests could detect them. We 

depict the MutationScore (the ratio of introduced mutants that were detected during testing) in Fig. 

  

        

 

 

 

 

 

 

 

 



 

 

15. The original test variants are slightly more adequate to detect mutants than the ECCO generated 

tests for both pairwise and three-wise variants, which correlates with the results obtained for 

OverallCoverage. 

Most of the individual test variants achieved a MutationScore of 50 to 70%, for pairwise 

and three-wise configurations, while the ECCO merged test variants and the original variants got up 

a mutation score from 60% up to 80% in pairwise configurations and up to 70% to 80% in three-

wise configurations. These results further underline the need to adapt the tests for changed 

configurations, and the usefulness of ECCO to support this process. 

 

Fig. 15 MutationScore of the ECCO and original pairwise and three-wise test variants and the individual 

variants on pairwise and three-wise configurations of Stack 

 

Fig. 16 Similarity of the ECCO pairwise and three-wise test variants to the original variants of ArgoUML 

  

          

 

 

 

 

 

 

 

 

 

 

     
 

 

 

 



 

 

6.2 ArgoUML 

ECCO took 13.8 seconds to extract the test code for the configuration options from the 

eight individual variants and about 23.8 seconds to generate the 28 pairwise variants. We also 

generate the three-wise combination for ArgoUML, which resulted in 56 variants in 48.3 seconds. 

Again, we created the pairwise and three-wise test variants with ECCO and automatically derived 

the original test variants for the pairwise and three-wise configurations from the annotated test code. 

All tests are executed on the source code for the pairwise or three-wise configurations, derived from 

the SPL. 

Figure 16 depicts the Similarity of the ECCO and the original variants. The average 

Similarity for the pairwise and three-wise variants was 99.2% and 98.7% respectively. On average, 

the original pairwise and three-wise variants include 4616 and 5095 statements respectively. The 

pairwise ECCO variants included on average 15.2 statements surplus and where missing on average 

28.9 statements. Similarly, the three-wise ECCO variants had on average 16.9 statements surplus 

and were missing 59 statements on average. 

 

Fig. 17 Number of Test Cases (Tests) in the ECCO and original pairwise and three-wise test variants and 

the individual variants on pairwise and three-wise configurations of ArgoUML 

Figure 17 shows the total number of tests executed for the pairwise and three-wise 

configurations for ECCO variants, the original test variants, and the individual variants. The number 

of tests in the ECCO variants and the original test variants are very close, ranging from 700 to 1100. 

The ECCO variants are missing some test cases that the SPL only adds to variants that have specific 

combinations of two or three configuration options. Therefore, none of the individual variants that 



 

 

ECCO used as input contain these tests. Since the individual variants only test configurations with 

individual configuration options, they also have fewer tests, about 770 to 800 tests for most variants. 

The only outlier is the individual variant testing configuration option cognitive, with nearly 1000 

tests. This configuration option is linked to a larger number of tests than the others and is also 

responsible for many of the tests in the pairwise and three-wise variants, which explains the relatively 

low medians in the box plots ECCO and original variants in Fig. 17, because only combination with 

cognitive contain the most tests. Generally, there are large overlaps in the tests that different 

variants contain. This means many of the tests are included independent of the configuration that 

should be tested. 

The SuccessRate for all variant’s tests was always 100%. Meaning no test raised any 

failures or errors. Therefore, ECCO was able to reliably merge the tests from different variants. Even 

though there seems not to be a clear advantage in the SuccessRate when using ECCO, automatically 

being able to select tests for the corresponding configuration options is still useful. On the results for 

OverallCoverage in Fig. 18, we can see the coverage for ECCO variants is always higher than the 

one for the individual variants, correlating with the number of tests in a variant. Moreover, the 

OverallCoverage for ECCO was nearly as high as the OverallCoverage for the original test variants. 

Unfortunately, the OverallCoverage of the tests used for ArgoUML was not very high, only 

up to about 14%. We confirmed this by also testing a variant, derived from the SPL, with all 

configuration options activated, and did not get much higher values. Therefore, this seems to be 

inherent to the tests for ArgoUML and not related to our experiment design. ECCO can by design 

not achieve a higher coverage than the original variant, since it only merges code that we provided 

as input. 

 



 

 

Fig.18 OverallCoverage of the ECCO and original pairwise and three-wise test variants and the individual 

variants on pairwise and three-wise configurations of ArgoUML 

Generally, the tests for ArgoUML did not contain much variability in their code. Based on 

the configuration entire tests are added or removed when deriving the variants from the SPL, but the 

code inside the tests stays the same independent of configuration. This also explains why we always 

achieved a SuccessRate of 100%. 

6.3 Bugzilla 

Next, we present the results for the two versions of Bugzilla that we used in our 

experiments. Since we did not have configurable tests for Bugzilla we can not compare our results 

to the original test results that could be achieved with tests devised specifically for the pairwise or 

three-wise configurations. We compare the results of our test variants generated with ECCO with 

the results of using the individual variants that were manually developed for the configurations with 

individual configuration options activated. To address specific configurations in Bugzilla we will 

use Cx,y,... with the set of identifying numbers for the configuration options that have been activated 

(e.g. C01,02 is the pairwise configuration that has both configuration options CO01 and CO02 from Table 

1 activated). Similarly, we use Tx,y,... with the set of identifying numbers for the configuration options 

that have been activated, for test variants that test a specific configuration (e.g. T01,02 is the variant to 

specifically test configuration C01,02). 

6.3.1 Bugzilla 3.4 

For Bugzilla 3, we could use all 15 configuration options, and therefore can compose 105 

test variants for pairwise configurations with ECCO and 455 three-wise. It took 39.3 seconds to 

extract the mapping information from the 16 initial variants and 21.1 seconds to generate the 105 

new pairwise variants and 85 seconds to generate all the 455 three-wise variants. 

Four out of the 105 variants resulted in a compiler error and could therefore not be executed 

(T04,05, T04,09, T09,11, and T09,12). These errors occurred at positions where the AST merge lead to 

merge conflicts that ECCO can not automatically decide. For instance, when two different return 

statements appear at the end of a method or when the same variable is defined in a method twice due 

to the merge. Similarly, all 48 three-wise variants combining the tests for the same configuration 

options cause compiler errors. We executed the tests for the remaining 101 pairwise and 407 three-

wise variants and computed our metrics. Moreover, during our experiment, we discovered that for 

four pairwise configurations (C07,09, C07,10, C08,09, C08,10), the setup did not work in one order of 

execution and in the other order we could not successfully reset the configuration. Nonetheless, we 



 

 

included the test results for the order that could be setup for these variants in our data, but we had 

manually override the image for the virtual machine running Bugzilla to do a hard reset and be 

certain that it was set back to the default configuration. Again, the same applied to all 42 three-wise 

configurations containing these combinations. The remaining configurations could be set up in both 

orders and the results for our metrics were the same in both orders for most configurations. The only 

exception were configurations combining CO14 and CO15, due to the expected conflict between the 

two configuration options by setting different default statuses for duplicate bugs. Depending on the 

order of the setup, either the tests of the individual variant T14 or T15 had a higher SuccessRate. The 

results for the ECCO variants or other individual variants stayed the same, and the SuccessRates for 

T14 and T15 did an exact flip with the order in which the configurations were set up and we included 

the results, because there was effectively no difference in the numbers. 

 

Fig. 19 Number of Test Cases (Tests) in the ECCO pairwise and three-wise test variants and the individual 

variants on pairwise and three-wise configurations of Bugzilla 3 

Figure 19 depicts the number of tests executed from the ECCO and individual variants on 

pairwise and three-wise configurations. The number of tests in the individual variants ranges from 

33 to 36 tests (see Table 1). For the ECCO variants, 33 to 38 tests are contained in the pairwise 

variants and up to 40 tests in three-wise variants, because tests associated with different 

configuration options are merged together in these variants. 

The SuccessRate for executing the tests from the different variants is depicted in Fig. 20. 

As we can see, the test variants generated with ECCO generally have a higher SuccessRate than any 

of the individual variants. Moreover, there is a slight drop in SuccessRate from pairwise to three-

  

        

 

 

 

 

 

 



 

 

wise configurations, which is because there is a higher likelihood of combinations that cause certain 

tests to fail. 

 

Fig. 20 SuccessRate of the ECCO pairwise and three-wise test variants and the individual variants on 

pairwise and three-wise configurations of Bugzilla 3 

Table 2 Contingency Tables of Successfully Passing Tests for ECCO vs. individual variants for Bugzilla 3 

 individual variants 

Successful 

  Total 

(a) Pairwise 

Configurations 
 

None One Both 
  

ECCO Success 67 24 1  92 

variants Fail 3 6 0  9 

Total  70 30 1  101

(b)Three-wise onfigurations

None One Two All Three

 

ECCO Success 292 11 0 0 303



 

 

variants Fail 93 11 0 0 104

Total  385 22 0 0 407

We additionally compared the test variants that could run on the pairwise and three-wise 

configurations without any further manual effort in the contingency Table 2a and b. The majority of 

the pairwise variants generated with ECCO could run on the pairwise configurations without any 

problem (92 out of 101). On the other hand, the individual variants only worked on 31 configurations 

(for 30 pairwise configurations one individual variant worked and for one configuration both 

individual variants worked without any errors or failures). For three-wise configurations, the results 

are somewhat worse, but still 74% (303 configurations) of the three-wise configurations could be 

tested with the ECCO variants without any problems. These results further supports the usefulness 

of ECCO to reuse tests for specific configurations. 

Figure 21 depicts the OverallCoverage for the different test variants. We found that 

generally the ECCO tests have higher coverage in most cases, and therefore executed more of the 

code of our page objects. However, since ECCO merges code from individual variants 

 

Fig. 21 OverallCoverage of the ECCO pairwise and three-wise test variants and the individual variants on 

pairwise and three-wise configurations of Bugzilla 3 

we would expect the generated variants to contain more code to execute than the individual 

variants. 



 

 

6.3.2 Bugzilla 5.1.1 

For Bugzilla 5 we can generate 78 pairwise and 286 three-wise combinations of the 13 

configuration options. The extraction with ECCO took 14.7 seconds. The composition took 19.8 

seconds for the pairwise variants and 67.8 seconds for the three-wise variants. One of the pairwise 

combinations resulted in a compiler error, which was the variant T04,09, that caused also a problem 

in Bugzilla 3. We excluded this variant from our experiments. Similarly, all eleven three-wise 

variants that merged T04 and T09 together caused a compiler error, which led us to exclude these 

eleven variants from the experiments. This leaves us with 77 pairwise and 275 three-wise test 

variants for the experiments. 

For four pairwise and 38 three-wise combinations, the setup only worked in one of the two 

orders. This happened for combinations with C07,09, C07,10, C08,09, C08,10, which are the same 

combinations that caused this problem for Bugzilla 3. Again, the automatic reset of these 

configurations did not work, and we had to manually overwrite the virtual machine image to make 

sure Bugzilla was in the default configuration again after executing the tests. We included the results 

for the order that worked. 

For the remaining configurations, for which the setup worked on both orders, there was no 

difference in the results, no matter which setup order was used. We show the number of tests 

executed on the pairwise and three-wise configurations for the ECCO variants and the individual 

variants in Fig. 22. The number of tests in the ECCO variants range from 33 to 37 in the pairwise 

variants and up to 39 in the three-wise variants. The individual variants generally have fewer tests, 

ranging from 33 to 35 test cases, because they are missing some tests that are specific from another 

configuration option. 

Figure 23 depicts the SuccessRate of the ECCO variants and the individual variants. For 

most configurations, the SuccessRate of the ECCO variants (on average 97.3% and 94.8% for 

pairwise and three-wise respectively) was higher than for the individual variants (on average 78.7% 

and 63.3% for pairwise and three-wise respectively). These results support the usefulness of ECCO 

to reuse tests, even though the SuccessRate was 100% only for 33 pairwise and 65 three-wise of the 

ECCO variants. We argue that the manual effort 



 

 

 

Fig. 22 Number of Test Cases (Tests) in the ECCO pairwise and three-wise test variants and the individual 

variants on pairwise and three-wise configurations of Bugzilla 5 

 

Fig. 23 SuccessRate of the ECCO pairwise and three-wise test variants and the individual variants on 

pairwise and three-wise configurations of Bugzilla 5 

of fixing the few failing ECCO tests should be lower than adapting and manually 

combining the tests from the individual variants that appear to have even more problems in the 

execution. 

Like for Bugzilla 3, we also checked how many of the variants could run without any error 

on Bugzilla 5 pairwise and three-wise configurations and show the results in Table 3a and b. 

However, the results for Bugzilla 5 are worse than for Bugzilla 3, in that fewer variants could be 

reused without a problem, implying a higher amount of manual effort to fix the test cases for the 

different configurations. For the pairwise configurations, only 33 out of the 77 ECCO variants 

worked on their intended configuration. Similarly, only 65 three-wise ECCO variants worked 

without any issue on their intended three-wise configuration. For the remaining 44 pairwise and 210 

three-wise variants manual effort is required to fix them. Nevertheless, for both pairwise and three-

  

      

 

 

 

 

 

 



 

 

wise configurations ECCO variants performed better in terms of SuccessRate than the individual 

variants. Only 23 of 275 the three-wise configurations could apply a single one of the individual 

variant without any adaption. 

Consistent with the different numbers of test cases and the difference in SuccessRate the 

results for OverallCoverage show that the ECCO variants generally cover more of 

Table 3 Contingency Tables of Successfully Passing Tests for ECCO vs. individual variants for Bugzilla 5 

 individual variants 

Successful 

  Total

(a) Pairwise Configurations None One Both   

ECCO Pair Success 19 13 1  33 

Variants Fail 32 12 0  44 

Total 51 25 1  77 

(b)Three-wise Configurations None One Two All Three  

ECCO Pair Success 59 6 0 0 65 

Variants Fail 193 17 0 0 210 

Total 252 23 0 0 275 



 

 

 

Fig. 24 OverallCoverage of the ECCO pairwise and three-wise test variants and the individual variants on 

pairwise and three-wise configurations of Bugzilla 5 

the page objects’ source code (see Fig. 24). The average OverallCoverage was 42.5% for 

the ECCO variants and 32.3% for the individual variants. The larger number of tests in the ECCO 

variants has a positive effect on the coverage, as well as the higher SuccessRate, since failing tests 

might have more test steps after the failure or error occurred that will not be executed anymore. 

6.4 ECCO Runtime 

The ECCO ExtractTime in seconds for each variant is depicted in Fig. 25. We observed 

that the extraction generally takes longer for larger systems, because more code and therefore larger 

ASTs have to be mapped to their configuration options. For the Stack, the extraction took less than 

one second for each variant. For the other systems, it took on average between one and three seconds 

to extract a variant. The first variant added to ECCO took slightly longer for all systems. This is 

because of the warm-up effect of the Java Virtual Machine (JVM), due to class loading and bytecode 

interpretation at startup. After this, the time to add a variant to the mapping is relatively constant for 

the systems, until we have added about twelve variants. As the number of variants that have been 

added to ECCO 



 

 

 

Fig. 25 ExtractTime of ECCO for individual variants per system 

increases, the operations to update the existing mapping get more computational expensive. 

This is in part because the new variant needs to be compared to more code fragments that already 

exist in the mapping. The other reason for this increase in time is because of the increasing number 

of configuration options, which means the extraction needs to consider more combinations of 

configuration options that could be mapped to source code fragments. Generally, the number of 

configuration options is the largest contributor to the ExtractTime of ECCO. 

Figure 26 depicts the ComposeTime to compose the pairwise and three-wise variants for 

each system with ECCO. As the smallest systems, the Stack took the least amount of time to 

compose. ArgoUML, the largest system in terms of lines of code, took the longest with up to four 

seconds to compose a variant. Nevertheless, for ArgoUML it took on average only 0.8 seconds to 

compose a variant. For Bugzilla, the composition took on average 0.2 seconds to generate a single 

variant. We did not observe any difference in composition times of pairwise and three-wise variants. 

The outliers in Fig. 26 can be attributed to the JVM warm-up effect again, as they happened when 

composing the first variants. The main driver for the composition time for variants was the size of 

the code base. 

7 Discussion 

In this section, we discuss the implications of the results on our research questions. 

RQ1: To what degree can tests from specific configurations be reused directly? In 

our experiments on the first two systems, we found that in most cases the tests could be applied with 

a high SuccessRate even on different configurations. This is because we activated additional 

configuration options which in these two systems mainly have the effect of adding functionality and 

 

 

 

 

 

    
 

 

 

 

 

 



 

 

in most cases did not change the behavior of existing functions, with the exception of the behavior 

of the Stack when trying to pop without pushing anything before. Especially, in the case of 

ArgoUML, the test cases are unit tests that test different functionality, which is either added or 

removed depending on the configuration, but its internal behavior stays the same regardless of other 

configuration options that are activated. 

 

ComposeTime (s) 

Fig. 26 ComposeTime of ECCO for pairwise and three-wise variants per system 

The tests for Bugzilla however, are system tests that had to be adapted to run on different 

configurations. Therefore, we could observe that tests for use cases that changed according to a 

configuration option would no longer work after changing the configuration. Nonetheless, there were 

still many tests that were not affected by changing the configuration, because specific configuration 

options only changed certain of the tested use cases, leading to an average SuccessRate for the two 

versions of 69.9% and 65.7%, respectively. This still shows the need to manually adapt most test 

variants for the majority of new configurations, which requires considerable manual effort. 

RQ2: To what degree can we automatically generate test suites for new 

configurations from existing tests? Our results support the general usefulness of ECCO to 

automatically generate new test variants, by merging existing tests for the configuration options. For 

the first two configurable systems we used in our experiments, Stack and ArgoUML, we found that 

the test generated with ECCO had always a SuccessRate of 100%. However, we could achieve the 

same by reusing the individual variants that we had from the start. Nonetheless, our ECCO generated 

tests achieved a higher OverallCoverage, and in most cases came very close to the results of the 

original variants, derived from the SPLs to test the pairwise or three-wise configurations. Especially, 



 

 

in the case of the Stack, where we were able to perform mutation testing, we found that the ECCO 

tests were able to kill nearly as many mutants as the original variants, and clearly outperformed the 

individual variants. 

For the two versions of Bugzilla, we found that tests generated by ECCO generally 

outperformed the individual test variants in terms of SuccessRate and OverallCoverage. Considering 

the results for pairwise combinations for Bugzilla 3, we found an average SuccessRate of 98.72% 

for tests we generated with ECCO, compared to a SuccessRate of 81.84% for using the two 

individual test variants. Even if we always select the original variants with the highest SuccessRate 

for every pairwise configuration, the average SuccessRate would be less (95.8%). However, the 

information required to make this selection for a specific configuration is unknown before execution. 

If we would instead always choose the worse of the two variants, the average SuccessRate drops to 

67.9%. Similarly, for the three-wise combinations for Bugzilla 3 we found a found a average 

SuccessRate of 95.9% for the ECCO test variants, while the individual variants achiever a 

SuccessRate of only 68.8%. 

The results for Bugzilla 5 turned out similar to the ones from Bugzilla 3. We found an 

average SuccessRate of 95.3% for ECCO test variants (97.3% for pairwise and 94.8% for three-

wise), while the average SuccessRate for individual variants was 65.7% (78.7% for pairwise and 

63.3% for three-wise). 

Generally, the results for testing three-wise configurations could be predicted from results 

of testing the pairwise configurations before, since combinations that caused problems in pairwise 

would also cause these problems when adding another configuration option to three-wise 

combinations. If any problems existed in pairwise variants, we would find the same ones for three-

wise variants and therefore the results for three-wise variants were slightly worse because more 

interactions between configuration options can occur there. Nonetheless, for Bugzilla some problems 

came up for the three-wise ECCO variants that did not exist in pairwise, which could imply 

interactions that only appear in three-wise combinations of configurations options, or that ECCO 

failed to generate the tests as well in these cases. If we would want to use ECCO to generate test 

variants for combinations of even more configuration options, for instance tests for Combinatorial 

Interaction Testing (CIT), we would most likely run into more problems like these. By evaluating 

ECCO on pairwise and three-wise combinations, as we did in this paper, we can better assess how 

common the problems for combinations are. Moreover, research suggests that most faults in a system 

can be detected with only covering all pairwise and three-wise combinations (Halin et al. 2019; Kuhn 

et al. 2004). Any configurations in a CIT covering array that includes one of these problem 



 

 

combinations would therefore also have issues that need to be manually fixed, when we composed 

it with ECCO. CIT is used because faults in configurable software can occur due to interactions of 

multiple configuration options. However, these interactions also make the reuse of tests more 

difficult. When using ECCO, we would expect some manual effort from developers to fix these 

interaction problems in the tests. Adding these fixed variants to ECCOs input would then help it in 

learning how to deal with these interactions and be able to reuse the fixed code in the future. Even 

with these problems, we still expect the overall manual effort for reusing tests to be lower when 

using ECCO than performing the entire reuse manually. 

We believe that ECCO can help to reduce the effort for reusing existing test code for new 

configurations, and is therefore beneficial for testing highly configurable software. Nevertheless, it 

can not eliminate the need for manually inspecting and when necessary completing the generated 

tests, to avoid errors from different behavior of configurations that ECCO could not predict. The 

similarity of the ECCO variants to the original variants, for the two systems we could compute it 

for, shows that the variants can be generate with a high accuracy. Therefore, the changes that have 

to be made to finalize a composed variant should be manageable and we argue that the effort to fix 

an ECCO variant should be lower than to develop a variant from scratch or by applying manual 

clone-and-own. To show that this assumption is true in practice more research in needed and a user 

study to proof this is an item of our future work. 

Another use case for which ECCO could be useful is the refactoring of individual test 

variants when moving variants that were developed using clone-and-own to a platform for more 

systematic reuse. We believe our results support the usefulness of ECCO for such a refactoring. 

7.1 Limitations 

In our experiments, we only measured the rate in which test cases succeeded and the code 

coverage. We did not have any fault data, so we were not able to investigate if the tests would actually 

be able to discover faults in the system. Moreover, it turned out that mutation testing was 

unfortunately only feasible on the smallest system, the Stack SPL, because of technological 

limitations. To further study the usefulness of our automated reuse approach for tests and to evaluate 

the generated test quality, measuring the fault detection capabilities is the next logical step. However, 

for now this has to remain an item on our future work agenda. Nonetheless, demonstrating that we 

can generate working test variants for new configurations is an important step into the direction of 

automated test reuse. 



 

 

Another limitation of our work we want to point out is that we only generate test variants 

for configurations, which are pairwise, and three-wise combinations of previously tested 

configuration options. We do not generate test suites for entirely new configurations. With ECCO, 

we can automatically reuse tests by mapping configuration options to test code that already exists, 

but the approach can not be used to generate entirely new test code. 

To enable the replication and comparison of our study, we opted to choose open-source 

systems. However, publicly available configurable systems with tests are hard to come by. This 

limited us to perform our experiments on only a few configurable systems we could find, and even 

there we had to create the Stack SPL ourselves and annotated the tests of ArgoUML to make them 

useful for our experiment. 

7.2 Threats to Validity 

External validity Our study includes three configurable systems. Two of the systems are 

SPLs and the other one (Bugzilla) is a configurable software system for which we used two different 

versions. To determine the degree to which results may be generalized, studies on more systems may 

be needed in the future. However, we used systems that implement configurations in a diverse 

manner to represent different types of configurable systems. 

A possible source for bias might be the configuration options we selected to use in our 

experiment. This choice was based on the variability models of the SPLs and by selecting arbitrary 

options from the Bugzilla configuration pages that have an observable impact on the user interface. 

Another possible source for bias might be that the tests were also created respectively 

annotated by the authors. The Stack SPL was entirely developed by the authors, and the annotations 

for the ArgoUML tests were also done by us in a process with automatic support with source code 

analysis. For Bugzilla, we developed the tests for the default configuration and then for the other 

configurations using a clone-and-own process, all before the experiments. We did not alter the tests 

at all for our experiments, so they are more realistic and even led to compiler errors in some of the 

variants generated by ECCO. 

Internal validity We required several tools to perform the experiments and for data 

analysis. Errors in these tools might bias our results. To reduce this possibility, we validated all used 

tools and our code on smaller examples and subsets of the data. Another possible source for bias 

might come from the automatic setup of the configurations in Bugzilla. To reduce this possibility, 

we randomly checked the configurations in Bugzilla and ensured it was configured as intended. 



 

 

Furthermore, we performed the experiments on pairwise and three-wise configurations with the 

setup in two orders to further reduce the potential of bias because of it. 

To show the applicability of ECCO for our test code we used it to reconstruct the individual 

variants we provided it as input. Hence, we used all individual variants as input for ECCO and 

regenerate all of them. We compared the Abstract Syntax Tree (AST) of the individual variants with 

ECCO’s reconstruction of the variants and found no difference. Moreover, we executed all tests on 

the reconstructed individual variants and compared the results and found no difference in the test 

results. Similarly, we found no difference in the coverage data we recorded. These results confirm 

the basic usefulness of ECCO for our experiment and showed that it successfully can identify parts 

specific to configuration options from the initial variants. 

Construct validity We measured test success and code coverage. Instead of only 

measuring which tests run without problem it would also be interesting to test for faults in the system 

and compare which tests are able to detect faults in different configurations. However, we did not 

have any faults for our systems and were also not able to perform mutation testing for two of our 

three systems. We argue that comparing the code coverage of different variants should be a good 

proxy for comparing their mutation score, because the variants generally perform the same checks 

if they reach certain code parts. Moreover, code coverage and mutation score are usually correlated 

with one another, since a mutant can only be detected if it was covered (Aaltonen et al. 2010). 

Moreover, for Bugzilla we measured the code coverage only on the Java page objects, 

because we could not find a feasible way to record the code coverage of Bugzilla’s Perl code. We 

argue that the coverage of the page objects is likely to correlate with the coverage of the 

corresponding Bugzilla page, but this might be a source for bias in our results. 

Due to the difficulty to find tests for open-source configurable systems to use in our 

experiments, we had to analyze the tests from ArgoUML and insert the annotations (following the 

Fischer et al. methodology (Fischer et al. 2018)) of which tests should belong to which configuration 

option. Since, we are not the SPL developers we could not make sure that our tests were defined 

sufficiently well to test each configuration option. Moreover, the tests for ArgoUML achieved a 

fairly low coverage of the system, even in a configuration with all configuration options enabled, 

which is an indicator that the test we used may be of poor quality. However, the goal of our 

experiment was to reuse existing tests, and we showed that ECCO was useful for this task and 

achieve similar results as the original tests directly derived from the SPL. 



 

 

8 Related Work 

8.1 Test Reuse for Configurable Software 

Cohen et al. performed an experiment to show the effect of executing tests for different 

configurations of a highly configurable system (Cohen et al. 2006). They found small differences in 

fault detection and code coverage across configurations. This experiment is similar to our first 

experiment for direct reuse, were we also found that many test cases still worked on different 

configurations. In their experiments, they injected mutants to simulate faults in the system. However, 

we did not have fault data available, and could only inject mutants in one of our systems, which is a 

limitation of our work. The main difference of this work and the work from Cohen et al. is that our 

main goal was to assess our capabilities to automatically generate new variants to test combinations 

of previous configurations, which was out of the scope of the experiments of Cohen et al. 

Ramler et al. reported their experience for automatically reusing tests across configurations 

and versions to increase code coverage (Ramler and Putschogl¨ 2013). They were able to increase 

coverage by directly reusing test cases from other configurations. We found similar results in our 

first experiment for direct reuse that showed that we can reuse some test cases for one configuration 

on a changed configuration without problems. Additionally, we performed experiments for 

automatically generating new test variants. 

As we have mentioned before, Kr¨uger et al. discuss the need for automatic refactoring of 

tests to reduce barriers of moving from variants developed with a clone-and-own process to a more 

systematic SPL platform (Kr¨uger et al. 2018). They discuss challenges linked to such a refactoring 

and outline their own ideas for such a refactoring approach. Our experiments support the usefulness 

of using ECCO for reusing tests and we argue that with ECCO we can address several of the 

challenges discussed by Kr¨uger et al. 

8.2 Configuration Aware Testing 

There exists a considerable amount of research on techniques for testing configurable 

systems. Various approaches have been devised that sample configurations to test or to select tests 

that should be executed on specific configurations to avoid re-executing redundant tests or variants. 

We summarize some of them here. Kim et al. performed static code analysis on SPLs to reduce the 

number of configurations to test, by identifying configuration options that have no effect on a given 

test (Kim et al. 2011). Further work by Kim et al. and Souto et al. improves this by using dynamic 

analysis to determine what configuration options can be reached by a test and therefore reduce the 



 

 

test effort (Kim et al. 2013; Souto et al. 2017). Similarly, Nguyen et al. proposed Varex, a variability 

aware interpreter that identifies code that is common when testing multiple configurations and 

subsequently only executing it for one configuration (Nguyen et al. 2014). Reisner et al. use symbolic 

execution to evaluate how configuration options affect the coverage of a configurable system for a 

given test suite and can therefore reduce the configuration space that needs to be considered for 

testing (Reisner et al. 2010). 

Employing similar analysis techniques in combination with ECCO could help a developer 

in identifying test cases that require manual fixing, by identifying configuration options that affect a 

test that was previously not executed on those options. Therefore, a developer could be directed to 

the tests that need fixing and even be informed of the configuration options that should be considered 

when altering the test code. 

9 Conclusions and Future Work 

In this paper, we performed experiments on test reusability across configurations of highly 

configurable software systems. Furthermore, we used an approach for automated reuse to generate 

tests for new configurations by reusing previously developed test variants. Our experiments showed 

that for most configurations a large proportion of test cases could be applied to changed 

configurations without problems. For our first two systems, nearly all individual test variants could 

be reused, and for the two versions of Bugzilla around 70% to, in some cases, 100% of tests cases 

could be directly reused. Automatically reusing tests yielded even better results in success rate and 

code coverage. Moreover, we were able to apply mutation testing to one of the systems. The results 

showed that the number of mutants detected during testing was higher with the automatically 

generated tests than with the existing individual test variants that were used as input for the 

automated reuse. These results suggest a considerable advantage for using automated test reuse over 

the direct reuse approach, which requires additional manual effort for adapting the failing tests. 

In our future work, we ideally could apply the automated reuse to industrial systems with 

a high amount of variability to confirm the results of our experiments. Ideally, we could get access 

to configurable systems with fault data available to better assess the quality of reused tests in future 

experiments. Furthermore, we would like to investigate if we could use ECCO to support the 

evolution of tests for different version. For instance, we could manually evolve some of the test 

variants for Bugzilla 3.4 to 5.1.1 and use ECCO to check if the changes made during evolution could 

be reused to evolve the remaining variants automatically. We could compare the results in similar 

experiments as in this paper. Another direction we believe that would be valuable to research is the 



 

 

application of ECCO to different testing techniques, like for instance model-based testing. Moreover, 

we plan to investigate if we can use the results from testing different configuration combinations to 

infer the existence of unknown interactions among configuration options. Finally, we want to 

perform a user study to better evaluate the effort of manual clone-and-own reuse versus for applying 

ECCO. 
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